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Let’s define a correct string of parentheses (round brackets): 
• () is a correct string of parentheses; 
• If A is a correct string of parentheses, then (A) also is a correct string of 

parentheses; 
• If both, A and B, are correct parentheses strings, then the concatenation AB is 

also a correct string of brackets. 
In other words, a correct parentheses string is a correct string of brackets, but 

containing no square brackets. 

Let us take an arbitrary correct string of parentheses and replace some (perhaps 
all, but at least one) of the closing (right) parentheses by the opening (left) 
parentheses. We shall name the resulting string a broken string of parentheses.  

It is easy to see that every broken string of brackets is also a broken string of 
parentheses, and vice versa. In fact, both of them fulfil the following two conditions: 

• the number of opening brackets is greater than the number of closing 
brackets; 

• the number of opening brackets is not less than the number of closing 
brackets for every prefix of the string. 

Accordingly, we will name both, the broken string of brackets and the broken 
strings of parentheses, broken strings.  

For further explanation, let s be a broken string. Let B(s) denote the set of 
correct strings of brackets that match the broken string of brackets s. Let P(s) 
denotes the set of correct strings of parentheses that match the broken string of 
brackets s. 

Lemma 
For any broken string s the sets B(s) and P(s) contain the same number of 

elements. 

Proof 
Let s be a broken string. We set a one-to-one correspondence between the 

elements of sets B(s) and P(s).  
1. Let b be an arbitrary correct string of brackets from B(s). Substitute its every 

square bracket by a corresponding round bracket (opening with opening, 
closing with closing). As a result we obtain some correct string of parentheses 
that matches s. 

2. Let p be an arbitrary correct string of parentheses from P(s).  We mark all 
closing round brackets of p that correspond to closing round brackets in s 
(that appear at the same position in p and s). Then we mark all opening round 
brackets in p that correspond to the already marked closing round brackets. 
Finally, we substitute all unmarked round brackets in p by square brackets 
(opening with opening, closing with closing). As a result we obtain some 
correct string of brackets that matches s. 

It follows from (1) and (2) that B(s) and P(s) contain the same number of 
elements. QED. 
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Thus, we have reduced the task to the following: calculate the number of 
distinct correct strings of parentheses that correspond to the given broken string. 
This task is solved using standard dynamic programming. 

Let r(L,i) denote the number of distinct prefixes with length L of correct strings 
of brackets that match the given broken string s such that the difference between 
opening and closing brackets is i.  

• r(0,0)=1, r(0,i)=0 for all i>0 
• If s[L]=’)’ then r(L,i) = r(L-1,i+1) for all i=0, L>=0. 
• If s[L]=’(‘ then r(L,0) = r(L-1,1), r(L,i) = r(L-1,i-1) + r(L-1,i+1) for all i>0, L>=0 
(s[L] denotes the L-th symbol of the given broken string s). 
r(N,0) contains the answer, where N is the length of the given broken string s. 

This directly leads to a solution with O(N^2) time and O(N^2) memory 
complexity. However, this is insufficient to score maximum points. 

Firstly, we have to avoid using a two-dimensional array; we have to somehow 
obtain the same result by a manipulation of one-dimensional arrays. Note that to 
calculate r(L,i) for all i, we need to remember only r(L-1,j) for all j (we don’t need any 
r(L’,j) where L’<L-1). Thus, it is enough to maintain only a one-dimensional array 
throughout the calculations. 

Secondly, straight forward implementation of the algorithm is a bit too slow. 
The correct solution is still O(N^2), but we should speed it up by some constant 
factor. 

Note that if L and i have different parity then r(L,i)=0.  
Note also that we are not interested in the values of r(L,i) when i>L or i>N-L. The 

first case does not matter because it essentially means that there have been more 
opening brackets than brackets in total in the prefix, which is impossible. The second 
case does not matter because it essentially means that there are currently more 
unclosed opening brackets in the prefix than the number of brackets left until 
reaching the length N; this is also an impossible case. 

The overall time complexity is O(N^2) and memory complexity O(N). Note that 
the observations mentioned in the previous two paragraphs greatly decrease the 
number interesting states and speeds up the execution approximately 8 times.  

Side note: This task was proposed for IOI 2011. 


