The well-known mobile network operator Totalphone has set up a number of new base transceiver stations in order to cover a newly-built highway with its network. As always the programmers of Totalphone have been sloppy; as a result, the transmission power cannot be set up individually for the stations, but one can only set the transmission power to a fixed common value for all the stations. In order to minimize power consumption, the company wants to know the maximal distance of a point on the highway to the nearest base transceiver station.

## Input data

The first line of text file mobile.in consists of two integers $N\left(1 \leq N \leq 10^{6}\right)$ and $\mathrm{L}\left(1 \leq \mathrm{L} \leq 10^{9}\right)$ representing the number of base transceiver stations and the length of the highway, respectively. $N$ lines follow, each containing a pair of integers $x_{i}, y_{i}$ $\left(-10^{9} \leq x_{i}, y_{i} \leq 10^{9}\right)$ which describes the coordinates of a base transceiver station. All points are distinct. Coordinates are sorted in the non-decreasing order with respect to $x_{i}$ coordinates. If two values of $x_{i}$ are the same, then coordinates are sorted with respect to $y_{i}$ coordinates in increasing order.

The highway is a straight line ranging from $(0 ; 0)$ to $(L ; 0)$.

## Output data

The first and only line of the text file mobile.out should contain a single number the maximal distance of a point on the highway to the nearest base transceiver station. Your output will be regarded as correct if it differs by at most $10^{-3}$ from the precise result.

## Example

| Input data (file mobile.in) | Output data (file mobile.out) |
| :--- | :--- |
| 22 0 <br> 11 1 |  |

## Grading

Test cases where $\mathrm{N} \leq 5000$ are worth 25 points.
Test cases where $\mathrm{N} \leq 100000$ are worth 50 points.

## Warning

Use at least double precision floating point numbers for your computations, as smaller types may fail to give the precision required for solving the problem.

